Back to Index
Isotopic Non-Totalistic Cellular Automaton
This is an isotopic non-totalistic cellular automaton often used for procedural dungeon generation to create organic caves. Unlike the Game of Life, which counts the total number of neighbors, this distinguishes between orthogonal neighbors and diagonal neighbors.
I first heard about these from Loren Schmidt. Many of the suggested settings are from her posts.
The rule is defined by a 5x5 Matrix.
Rows represent the Orthogonal Neighbor Count (0 to 4).
Columns represent the Diagonal Neighbor Count (0 to 4).
Values: 0 = Death, 1 = Birth/Live, 2 = No Change.
Link to this automaton
Suggested settings:
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,2,1,0,0%5D,%0A%5B1,2,0,0,0%5D,%0A%5B1,1,1,2,0%5D,%0A%5B1,1,1,1,2%5D,%0A%5B0,1,1,1,2%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,2,1,0,0%5D,%0A%5B1,0,0,0,0%5D,%0A%5B1,1,1,2,0%5D,%0A%5B1,1,1,1,2%5D,%0A%5B0,1,1,1,2%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,0,1,2,0%5D,%0A%5B0,0,2,2,0%5D,%0A%5B1,1,1,2,0%5D,%0A%5B2,2,1,0,2%5D,%0A%5B0,1,2,0,0%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,0,2,0,1%5D,%0A%5B0,2,2,2,2%5D,%0A%5B1,1,2,0,2%5D,%0A%5B1,1,2,2,1%5D,%0A%5B1,1,2,1,0%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,2,2,2,1%5D,%0A%5B0,0,1,1,1%5D,%0A%5B0,0,1,1,1%5D,%0A%5B1,2,2,0,2%5D,%0A%5B0,2,0,0,1%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,0,0,0,1%5D,%0A%5B1,0,0,0,0%5D,%0A%5B1,2,0,2,2%5D,%0A%5B1,1,1,1,2%5D,%0A%5B1,1,2,1,1%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B1,2,1,0,0%5D,%0A%5B0,1,1,1,0%5D,%0A%5B0,0,1,1,0%5D,%0A%5B2,0,0,0,2%5D,%0A%5B0,1,0,0,0%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,0,2,0,1%5D,%0A%5B0,2,1,1,2%5D,%0A%5B0,2,0,0,0%5D,%0A%5B2,1,1,2,0%5D,%0A%5B2,0,1,1,2%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,1,1,1,2%5D,%0A%5B0,0,2,2,2%5D,%0A%5B0,1,1,2,1%5D,%0A%5B0,0,0,1,1%5D,%0A%5B1,0,0,1,1%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,1,1,1,0%5D,%0A%5B2,2,1,1,1%5D,%0A%5B1,0,2,1,2%5D,%0A%5B1,0,0,1,2%5D,%0A%5B2,0,0,2,0%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B0,0,0,0,2%5D,%0A%5B1,0,1,0,0%5D,%0A%5B0,0,0,1,1%5D,%0A%5B0,1,1,1,2%5D,%0A%5B2,0,1,1,0%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,2,1,0,0%5D,%0A%5B0,0,0,2,1%5D,%0A%5B0,1,1,1,2%5D,%0A%5B2,1,0,1,1%5D,%0A%5B1,0,0,1,1%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,0,1,1,2%5D,%0A%5B2,0,0,1,0%5D,%0A%5B0,1,0,0,1%5D,%0A%5B2,0,2,1,0%5D,%0A%5B2,2,0,2,1%5D%5D
#w=200&h=200&scale=2&fill=0.5&rule=%5B%5B2,2,2,1,1%5D,%0A%5B2,2,0,1,1%5D,%0A%5B2,0,1,2,0%5D,%0A%5B2,1,1,2,0%5D,%0A%5B2,2,0,2,1%5D%5D